Skip to main content

Q: My physics teacher said that it is imposible to go faster than the speed on light, but if you were standing on a train going at the speed of light and you walked from one end of the train to the other, then would'nt you be going faster than the speen of light relative to the ground? and what would happen if you were going at the speed on light or faster? Theoretically - Daimhin

It may seem like should happen that way. The problem with physics is that it doesn't always work the way that it seems like it should.

You've probably learned that the speed of light is a constant (c). But what if you looked at it from different points of view? For instance, if you're standing on the Earth, then the speed of light is c. But what if you're standing on the train that's moving at half the speed of light? Shouldn't it look like the light is moving at half speed? Well, for all that it certainly seems like it should, it doesn't. The light moves at the same speed whether you're standing on the Earth, or on a speeding train.
But whoa! How can the light move at the same speed from the Earth's perspective as from the train's? Because velocity is equal to distance divided by time, and it seems like everybody should agree on the distance traveled and the time elapsed. But do they? According to special relativity (Einstein's work), distance and time don't work the way that we think they do either, and that get's really important when you're talking about speeds close to the speed of light.

I know that this wasn't exactly what you were asking, but I wanted to emphasize to you how things don't always happen according to the rules that you're used to. One of the basic rules of space and time is that no object can travel faster than c. That might seem ridiculous, because if you can get a train going at 0.9999999999c , you could then walk on it at 0.0000000002 c relative to the train, and that would add up to 1.0000000001 c. However, velocities don't add that way because time and space intervals aren't the same as seen from the ground and the train. Somebody on the train says that your walking at 0.0000000002 c. Somebody on the ground thinks that your steps are much smaller than you or your friends on the train think, and that it takes you much longer to take those steps than you think. So they still end up thinking that you're traveling at less than c.

You might think that if you could just keep applying force to something it would accelerate to greater than c. However, that assumes that F=ma, which turns out to be false. The effective 'm' in the expression mv for the momentum (v is velocity) increases for bigger v! When you exert a force, as v gets near c you end up mainly increasing that 'm', not v.

The kinetic energy grows more rapidly as v increases than classical physics would say. As v gets close to c, the energy grows toward infinity. So to get to the speed of light, it would take an infinite amount of energy.

Popular posts from this blog



In  this  configuration  the  input  is  applied  between the  base  and  the  collector and  the  output  is  taken  from  the  collector  and  the  emitter.  Here  the  collector  is common to both the input and the output circuits as shown in Fig.

  Common Collector Transistor Circuit

In  common  collector  configuration  the  input  current  is  the  base current  IB  and  the output current is the emitter current IE. The ratio of change in emitter current to the  change in the base current is called current amplification factor.

It is represented by


A test  circuit  for determining the  static characteristic  of an NPN transistor is shown in Fig. In this circuit the collector is common to both the input and the output circuits.   To   measure   the   base   and   the   emitter   currents,   milli   ammeters   are connected in series with the base and the emitter circuits. Voltmeters are connected   across the input an…

XII - Ch# 12 : Electrostatics :Solved Numericals

Solution Manual : Mathematical methods for physicists 5th edition Arfken and Weber

DJ VU Reader
Book Description Now in its 7th edition, Mathematical Methods for Physicists continues to provide all the mathematical methods that aspiring scientists and engineers are likely to encounter as students and beginning researchers. This bestselling text provides mathematical relations and their proofs essential to the study of physics and related fields. While retaining the key features of the 6th edition, the new edition provides a more careful balance of explanation, theory, and examples. Taking a problem-solving-skills approach to incorporating theorems with applications, the book's improved focus will help students succeed throughout their academic careers and well into their professions. Some notable enhancements include more refined and focused content in important topics, improved organization, updated notations, extensive explanations and intuitive exercise sets, a wider range of problem solutions, improvement in the placement, and a wider ra…