Skip to main content

Q: What is dark matter and why is it important to our understanding of the universe? - Predrag

Dark matter is matter that is invisible to our normal methods of observing matter in galaxies, yet it still has gravitational effects on visible matter. No one is quite sure what dark matter consists of and it's a topic of a lot of ongoing research.

Dark matter was originally theorized by an astronomer by the name of Fritz Zwicky who saw a large discrepancy between the observed mass of galaxies (the visible matter) and their computed masses (computed from gravitational effects). This discrepancy is known as the "missing mass problem." This missing mass is termed dark matter -- it is "dark" because it's not visually observable.

Understanding dark matter helps us understand the history of the universe. Our current knowledge of the formation of galaxies is not consistent with theories that do not involve dark matter, so the more we know about dark matter, the more we understand how these galaxies originally formed. Also, it helps us understand current behavior of galaxies. Without dark matter, objects further away from the center of a galaxy should move slower, but experimental evidence shows that instead, this motion is constant after a certain radius. Dark matter explains this anomaly.

An important concept related to dark matter is dark energy. Dark energy helps us understand the universe's expansion. More information on dark matter and dark energy can be found here and here.


Popular posts from this blog



In  this  configuration  the  input  is  applied  between the  base  and  the  collector and  the  output  is  taken  from  the  collector  and  the  emitter.  Here  the  collector  is common to both the input and the output circuits as shown in Fig.

  Common Collector Transistor Circuit

In  common  collector  configuration  the  input  current  is  the  base current  IB  and  the output current is the emitter current IE. The ratio of change in emitter current to the  change in the base current is called current amplification factor.

It is represented by


A test  circuit  for determining the  static characteristic  of an NPN transistor is shown in Fig. In this circuit the collector is common to both the input and the output circuits.   To   measure   the   base   and   the   emitter   currents,   milli   ammeters   are connected in series with the base and the emitter circuits. Voltmeters are connected   across the input an…

XII - Ch# 12 : Electrostatics :Solved Numericals

Solution Manual : Mathematical methods for physicists 5th edition Arfken and Weber

DJ VU Reader
Book Description Now in its 7th edition, Mathematical Methods for Physicists continues to provide all the mathematical methods that aspiring scientists and engineers are likely to encounter as students and beginning researchers. This bestselling text provides mathematical relations and their proofs essential to the study of physics and related fields. While retaining the key features of the 6th edition, the new edition provides a more careful balance of explanation, theory, and examples. Taking a problem-solving-skills approach to incorporating theorems with applications, the book's improved focus will help students succeed throughout their academic careers and well into their professions. Some notable enhancements include more refined and focused content in important topics, improved organization, updated notations, extensive explanations and intuitive exercise sets, a wider range of problem solutions, improvement in the placement, and a wider ra…