Skip to main content

Q: Why exactly is the speed of light constant in vacuum? I know that's what happens, but I want to know why. Relativity simply works under the assumption of light's constant speed, but that doesn't prove it. It's sort of like saying the product of two numbers is equal to the sum of the same two numbers just because 2+2=2x2. A proof requires more than a phenomenon. - Bill

This is an interesting philosophical question. In physics, we don't prove theories to be right, but we do prove theorems about the math used to hold together our theories. Which theories (whole structures, not just little fragmentary claims) are right is in the end determined by mere phenomena. Nobody gave us any book of true assertions, we have to cobble them together out of observation and mathematical logic.

The key logic behind Special Relativity was that Maxwell's equations for electromagnetism looked like exact, universal laws of physics, and their solution gives light waves with a universal speed. Now it was logically possible that those laws were only true in one special reference frame, but by 1905 no experiment (including the famous attempt by Michelson and Morley) provided any evidence that they failed to work in any inertial frame. Einstein showed that there was a logical, consistent framework (Special Relativity) in which Maxwell's equations worked in all inertial frames, and Newton's laws also almost worked for any objects moving slowly with respect to a frame. From this new framework, all sorts of other effects could be derived, and they were all confirmed. Among those many effects are the energy-dependent lifetimes of particles, the exact dynamics of fast-moving particles, the patterns of radiation from accelerating particles, the magnetism-like velocity-dependent term accompanying each fundamental force, etc.

Ultimately, the framework ran into trouble with gravity, and had to be replaced by General Relativity, which in turn probably will ultimately have to be replaced (maybe by something like String Theory) some day.

So in one sense you're right- we don't prove things the way mathematicians do, but instead have to rely a lot on what we actually see. In another sense you're wrong- we aren't generalizing from one isolated fact (like your numerical example), but fitting a huge collection of diverse observations precisely to an extended logical system.


Popular posts from this blog



In  this  configuration  the  input  is  applied  between the  base  and  the  collector and  the  output  is  taken  from  the  collector  and  the  emitter.  Here  the  collector  is common to both the input and the output circuits as shown in Fig.

  Common Collector Transistor Circuit

In  common  collector  configuration  the  input  current  is  the  base current  IB  and  the output current is the emitter current IE. The ratio of change in emitter current to the  change in the base current is called current amplification factor.

It is represented by


A test  circuit  for determining the  static characteristic  of an NPN transistor is shown in Fig. In this circuit the collector is common to both the input and the output circuits.   To   measure   the   base   and   the   emitter   currents,   milli   ammeters   are connected in series with the base and the emitter circuits. Voltmeters are connected   across the input an…

XII - Ch# 12 : Electrostatics :Solved Numericals

Solution Manual : Mathematical methods for physicists 5th edition Arfken and Weber

DJ VU Reader
Book Description Now in its 7th edition, Mathematical Methods for Physicists continues to provide all the mathematical methods that aspiring scientists and engineers are likely to encounter as students and beginning researchers. This bestselling text provides mathematical relations and their proofs essential to the study of physics and related fields. While retaining the key features of the 6th edition, the new edition provides a more careful balance of explanation, theory, and examples. Taking a problem-solving-skills approach to incorporating theorems with applications, the book's improved focus will help students succeed throughout their academic careers and well into their professions. Some notable enhancements include more refined and focused content in important topics, improved organization, updated notations, extensive explanations and intuitive exercise sets, a wider range of problem solutions, improvement in the placement, and a wider ra…