Skip to main content

Wave Nature of Particle - the de Broglie Hypothesis( College Level)

In experiments like photoelectric effect and Compton effect, radiation behaves like particles. de Broglie, a french physicist asked whether in some situations, the reverse could be true, i.e., would objects which are generally regarded as particles (e.g. electrons) behave like waves ? In 1924 de Broglie postulated that we can associate a wave with every material object. In analogy with photons, he proposed that the wavelength associated with such a matter wave is related to the particle momentum through the relationship

where is the Planck's constant

Wavelike behaviour of a macroscopic object is difficult to detect as the wavelength is very small.
However, wave nature of particles may be detected in diffraction experiments where the dimensions of the obstacles are comparable with the wavelength of matter wave incident on the obstacle.

Example :Electron Diffraction from a Crystal

Consider a beam of electron with a speed m/s corresponding to a wavelength nm. Such a wave may be diffracted by gratings with separation of similar order as that of the wavelength. Crystals provide such natural gratings.
Davisson - Germer Experiment :
Experimental confirmation of de Broglie hypothesis was provided in 1926 by Davisson and Germer, who studied diffraction of a beam of electrons from the surface of a nickel crystal.

A beam of electrons from a heated filament, accelerated through a potential difference is made to strike the surface of a crystal of Ni. Electrons are scattered in all directions and may be detected by an array of detectors located at various angles of scattering. It is found that the intensity of scattered beam is maximum at some particular angles of incidence, in the same manner as the case when a beam of x-rays strikes the crystal
In Davisson - Germer experiment, the electron beam was accelerated through a potential difference of volts. The kinetic energy of the electron is thus 54 eV. The de Broglie wavelength associated with an electron accelerated through a potential difference may be expressed as


The dual nature not only is exhibited by radiation but is also associated with matter. In some experiments matter shows wave character.
de Broglie hypothesis poastulates a wavelength of with a particle having a momentum .
 Experimental confirmation of wave nature of matter comes from experiments such as Davisson Germer experiments
on electron diffraction from crystals. It is seen that the intensity of scattered beam is maximum at those points where one would expect Laue spots in x-ray diffraction assuming the electronsare waves with de Broglie wavelength.
 Bohr model can be understood by postulating that stable orbits in atoms are those which are standing waves of
One can perform double slit experiment with electrons, similar to the way Young's double slit experiment is
performed with light waves. The intensity pattern obtained on a screen is very similar in both cases.
 According to the principle of complementarity one cannot obtain information on both the wave nature and particle
nature of matter or radiation in the same experiment.
Heisenberg uncertainty principle states that one cannot precisely measure both position and momentum of a
particle in the same experiment.

Popular posts from this blog



In  this  configuration  the  input  is  applied  between the  base  and  the  collector and  the  output  is  taken  from  the  collector  and  the  emitter.  Here  the  collector  is common to both the input and the output circuits as shown in Fig.

  Common Collector Transistor Circuit

In  common  collector  configuration  the  input  current  is  the  base current  IB  and  the output current is the emitter current IE. The ratio of change in emitter current to the  change in the base current is called current amplification factor.

It is represented by


A test  circuit  for determining the  static characteristic  of an NPN transistor is shown in Fig. In this circuit the collector is common to both the input and the output circuits.   To   measure   the   base   and   the   emitter   currents,   milli   ammeters   are connected in series with the base and the emitter circuits. Voltmeters are connected   across the input an…

XII - Ch# 12 : Electrostatics :Solved Numericals

Solution Manual : Mathematical methods for physicists 5th edition Arfken and Weber

DJ VU Reader
Book Description Now in its 7th edition, Mathematical Methods for Physicists continues to provide all the mathematical methods that aspiring scientists and engineers are likely to encounter as students and beginning researchers. This bestselling text provides mathematical relations and their proofs essential to the study of physics and related fields. While retaining the key features of the 6th edition, the new edition provides a more careful balance of explanation, theory, and examples. Taking a problem-solving-skills approach to incorporating theorems with applications, the book's improved focus will help students succeed throughout their academic careers and well into their professions. Some notable enhancements include more refined and focused content in important topics, improved organization, updated notations, extensive explanations and intuitive exercise sets, a wider range of problem solutions, improvement in the placement, and a wider ra…