### In ohmic law the voltage is directly proportional to current while in case of electric transformer the situation is quite reverse voltage is inversely proportion to current.clarification is required.

Actually, according to Ohm,s Law I= V/R, clearly Current is directly proportional to the Voltage, But according to P=VI or I=P/V, it shows that current is inversely proportional to the Voltage.

It depends on how you increase the voltage if you increase it by keeping the power of the source constant or not,if the power of the source is constant then the current would decrease when voltage increasing ....if you don't care about the power and just simply replace the battery with a new one's with higher power rating this can increase the current.

In Transformer, when voltage increases then current decrease because power remains constant...both side power is P=VI

By Ohm's Law, Current (I) is directly proportional to the Voltage (V) if Resistance (R) and Temperature remain same.
I = V/R.....or...R=V/I.....or......V=IR.

According to P=VI...or...I=P/V....or ...V=P/I,..... It says that Current inversely proportional to the voltage if power remain same.As we know that in Transformer, If power remain same, and voltage increase, then current decreases in Step Up Transformer. also Voltage decreases when current increases as in Step Down Transformer.

### COMMON COLLECTOR CONFIGURATION OF A TRANSISTOR

COMMON COLLECTOR CONNECTION

In  this  configuration  the  input  is  applied  between the  base  and  the  collector and  the  output  is  taken  from  the  collector  and  the  emitter.  Here  the  collector  is common to both the input and the output circuits as shown in Fig.

Common Collector Transistor Circuit

In  common  collector  configuration  the  input  current  is  the  base current  IB  and  the output current is the emitter current IE. The ratio of change in emitter current to the  change in the base current is called current amplification factor.

It is represented by

COMMON COLLECTOR CIRCUIT

A test  circuit  for determining the  static characteristic  of an NPN transistor is shown in Fig. In this circuit the collector is common to both the input and the output circuits.   To   measure   the   base   and   the   emitter   currents,   milli   ammeters   are connected in series with the base and the emitter circuits. Voltmeters are connected   across the input an…