Skip to main content

What is Boyle's Law?

Boyle studied the compressibility of gases in 1660. In his experiments he observed "At a fixed temperature, the volume of a gas is inversely proportional to the pressure exerted by the gas." The experiment is simple: (see figure on right)

A cylinder with a piston and a gas is immersed in a bath (e.g. water). The purpose of the bath is to have a ready heat source to maintain the temperature of the gas constant throughout the experiment. A mass is placed on top of the piston which results in a pressure on the gas. The gas volume is measured and 1/V vs P data point plotted. The mass is increased and the new 1/V vs P data point plotted. This is continued over several larger masses. to see what happens place the mouse cursor over the image.

The straight line impliesor

Which is Boyle's law.


Popular posts from this blog



In  this  configuration  the  input  is  applied  between the  base  and  the  collector and  the  output  is  taken  from  the  collector  and  the  emitter.  Here  the  collector  is common to both the input and the output circuits as shown in Fig.

  Common Collector Transistor Circuit

In  common  collector  configuration  the  input  current  is  the  base current  IB  and  the output current is the emitter current IE. The ratio of change in emitter current to the  change in the base current is called current amplification factor.

It is represented by


A test  circuit  for determining the  static characteristic  of an NPN transistor is shown in Fig. In this circuit the collector is common to both the input and the output circuits.   To   measure   the   base   and   the   emitter   currents,   milli   ammeters   are connected in series with the base and the emitter circuits. Voltmeters are connected   across the input an…

XII - Ch# 12 : Electrostatics :Solved Numericals

Solution Manual : Mathematical methods for physicists 5th edition Arfken and Weber

DJ VU Reader
Book Description Now in its 7th edition, Mathematical Methods for Physicists continues to provide all the mathematical methods that aspiring scientists and engineers are likely to encounter as students and beginning researchers. This bestselling text provides mathematical relations and their proofs essential to the study of physics and related fields. While retaining the key features of the 6th edition, the new edition provides a more careful balance of explanation, theory, and examples. Taking a problem-solving-skills approach to incorporating theorems with applications, the book's improved focus will help students succeed throughout their academic careers and well into their professions. Some notable enhancements include more refined and focused content in important topics, improved organization, updated notations, extensive explanations and intuitive exercise sets, a wider range of problem solutions, improvement in the placement, and a wider ra…