Skip to main content

Young's Double Slit Experiment

This is a classic example of interference effects in light waves. Two light rays pass through two slits, separated by a distance d and strike a screen a distance, L , from the slits, as in Fig. 22.10.

Figure 22.10: Double slit diffraction

If d < < L then the difference in path length r1 - r2 travelled by the two rays is approximately:

r1 - r2 dsin

where is approximately equal to the angle that the rays make relative to a perpendicular line joining the slits to the screen.

If the rays were in phase when they passed through the slits, then the condition for constructive interference at the screen is:

dsin = m ,m = 1, 2,...

whereas the condition for destructive interference at the screen is:

dsin = (m + ) ,m = 1, 2,...

The points of constructive interference will appear as bright bands on the screen and the points of destructive interference will appear as dark bands. These dark and bright spots are called interference fringes. Note:
In the case that y , the distance from the interference fringe to the point of the screen opposite the center of the slits (see Fig.22.10) is much less than L ( y < <L ), one can use the approximate formula:

sin y/Lso that the formulas specifying the y - coordinates of the bright and dark spots, respectively are:

y Bm = brightspots

y Dm = darkspotsThe spacing between the dark spots is

y =

If d < < L then the spacing between the interference can be large even when the wavelength of the light is very small (as in the case of visible light). This give a method for (indirectly) measuring the wavelength of light. 

The above formulas assume that the slit width is very small compared to the wavelength of light, so that the slits behave essentially like point sources of light.


Popular posts from this blog



In  this  configuration  the  input  is  applied  between the  base  and  the  collector and  the  output  is  taken  from  the  collector  and  the  emitter.  Here  the  collector  is common to both the input and the output circuits as shown in Fig.

  Common Collector Transistor Circuit

In  common  collector  configuration  the  input  current  is  the  base current  IB  and  the output current is the emitter current IE. The ratio of change in emitter current to the  change in the base current is called current amplification factor.

It is represented by


A test  circuit  for determining the  static characteristic  of an NPN transistor is shown in Fig. In this circuit the collector is common to both the input and the output circuits.   To   measure   the   base   and   the   emitter   currents,   milli   ammeters   are connected in series with the base and the emitter circuits. Voltmeters are connected   across the input an…

XII - Ch# 12 : Electrostatics :Solved Numericals

Solution Manual : Mathematical methods for physicists 5th edition Arfken and Weber

DJ VU Reader
Book Description Now in its 7th edition, Mathematical Methods for Physicists continues to provide all the mathematical methods that aspiring scientists and engineers are likely to encounter as students and beginning researchers. This bestselling text provides mathematical relations and their proofs essential to the study of physics and related fields. While retaining the key features of the 6th edition, the new edition provides a more careful balance of explanation, theory, and examples. Taking a problem-solving-skills approach to incorporating theorems with applications, the book's improved focus will help students succeed throughout their academic careers and well into their professions. Some notable enhancements include more refined and focused content in important topics, improved organization, updated notations, extensive explanations and intuitive exercise sets, a wider range of problem solutions, improvement in the placement, and a wider ra…