Skip to main content

COMMON EMITTER CONFIGURATION OF A TRANSISTOR


COMMON EMITTER CONNECTION




In this configuration, the input is applied between the base and the emitter and the output is taken from the collector and the emitter. In this connection, the emitter is common to both the input and the output circuits as shown in Fig. In the common emitter configuration the input current is the base current IB and the output current is the collector current IC. The ratio of change in collector current to the change in base current at constant collector-emitter voltage is called base current amplification factor ( ).

COMMON EMITTER CIRCUIT

A test circuit for determining the static characteristic of an NPN transistor is shown in Fig In this circuit emitter is common to both input and output circuits. To measure the base and collector current milli ammeters are connected in series with the base and the output circuits. Voltmeters are connected across the input and the output circuits to measure VBE and VCE There are two potentiometers R1 and R2 to vary the supply voltages VCC and VBB.

              Circuit arrangement to determine static characteristic of common emitter
                             
Input Characteristics

It is a curve which shows the relationship between base current IB and the emitter-base voltage, VBE at constant VCE. The method of determining the characteristic is as follows.



                                                Common emitter input characteristic curve

First, by means of R1 suitable voltage is applied from VCC, Next, voltage VBE is increased in number of steps and corresponding values of IB are noted. The base current is taken on the Y-axis and the base-emitter voltage is taken on the X-axis.

Fig shows the input characteristic for common emitter configuration. The following points may be noted from the characteristic.

1. The input resistance of the transistor is equal to the reciprocal of the slope of the input characteristic curve.


2. The initial portion of the curve is not linear.

3. The input resistance varies considerable from a value 4 kilo ohm to a value of 600 ohms.

4. In the case of silicon transistor the curves break away from zero current for voltage in the range of 0.5 to  0.6 volt whereas for germanium transistor the break away point is in the range 0.1 to 0.2V


Output Characteristics

It is a curve which shows the relationship between the collector IC and the collector- emitter voltage VCE. This method of determining the characteristic is as follows.

First by means of R1 a suitable base current IB is maintained. Next VCE is increased from zero, in a number of steps and corresponding values of IC are noted. The above whole procedure isrepeated for different values of IB. The collector current is taken on the Y-axis. Fig shows the family of output characteristics at different base current values. The following points may be noted from the family of characteristic curves.


                                      Common emitter characteristic curve


1.The collector current IC increases rapidly to a saturation level for fixed value of IB. But at the same time VCE increases from zero.

2.A small amount of collector current flows even when IB=0 the current is called ICEO. Now main collector current is zero and the transistor is cut-off.

3.The output characteristics may be divided into three regions.

The active region
Cut-off region
Saturation region

Active region: In this region the collector is reverse biased and the emitter is forward biased. The collector current, IC response is most sensitive for changes in IB. Since = /(1- ) and also is very close to unity. (I - ) is very small. Therefore, a slight change in a produces very large change in b and so the collector current,


is changed substantially

Cut-off region: When IE= 0 and IC = ICO, the cut-off condition of the transistor is reached. It is necessary that emitter junction has to reverse biased slightly i.e., 0.1 V for germanium and 0 volt for silicon.

In this region

Saturation region: In this region incremental change, in IB do not produce corresponding large changes in IC. The region is also refer to as bottomed region because the voltage has fallen near the bottom of the characteristic. In this configuration saturation is entered while collector is still reverse biased.

Comments

  1. thank you very much for helping me
    the above article statisfy me betterly.

    ReplyDelete
  2. You are Welcome...For any other topic feel free to ask.

    ReplyDelete
  3. nice article helped me alot

    ReplyDelete
  4. thank u very much it helped me to understand much

    ReplyDelete
  5. please post much about diodes

    ReplyDelete
  6. thank you so much.it helped me do my project

    ReplyDelete
  7. the concept of common emmiter could be elaborated

    ReplyDelete
  8. common emitter circuit could be described even better

    ReplyDelete
  9. Anser gondal pgc21 October 2017 at 22:34

    Anser gondaL(pgc): concept is elaborated in well way

    ReplyDelete

Post a Comment

Popular posts from this blog

COMMON COLLECTOR CONFIGURATION OF A TRANSISTOR

COMMON COLLECTOR CONNECTION

In  this  configuration  the  input  is  applied  between the  base  and  the  collector and  the  output  is  taken  from  the  collector  and  the  emitter.  Here  the  collector  is common to both the input and the output circuits as shown in Fig.

  Common Collector Transistor Circuit

In  common  collector  configuration  the  input  current  is  the  base current  IB  and  the output current is the emitter current IE. The ratio of change in emitter current to the  change in the base current is called current amplification factor.

It is represented by


COMMON COLLECTOR CIRCUIT

A test  circuit  for determining the  static characteristic  of an NPN transistor is shown in Fig. In this circuit the collector is common to both the input and the output circuits.   To   measure   the   base   and   the   emitter   currents,   milli   ammeters   are connected in series with the base and the emitter circuits. Voltmeters are connected   across the input an…

XII - Ch# 12 : Electrostatics :Solved Numericals

Solution Manual : Mathematical methods for physicists 5th edition Arfken and Weber

Download
DJ VU Reader
Book Description Now in its 7th edition, Mathematical Methods for Physicists continues to provide all the mathematical methods that aspiring scientists and engineers are likely to encounter as students and beginning researchers. This bestselling text provides mathematical relations and their proofs essential to the study of physics and related fields. While retaining the key features of the 6th edition, the new edition provides a more careful balance of explanation, theory, and examples. Taking a problem-solving-skills approach to incorporating theorems with applications, the book's improved focus will help students succeed throughout their academic careers and well into their professions. Some notable enhancements include more refined and focused content in important topics, improved organization, updated notations, extensive explanations and intuitive exercise sets, a wider range of problem solutions, improvement in the placement, and a wider ra…