23.1. Introduction
The presence of an electric charge produces a force on all other charges present. The electric force produces action-at-a-distance; the charged objects can influence each other without touching. Suppose two charges, q1 and q2, are initially at rest. Coulomb's law allows us to calculate the force exerted by charge q2 on charge q1 (see Figure 23.1). At a certain moment charge q2 is moved closer to charge q1. As a result we expect an increase of the force exerted by q2 on q1. However, this change can not occur instantaneous (no signal can propagate faster than the speed of light). The charges exert a force on one another by means of disturbances that they generate in the space surrounding them. These disturbances are called electric fields. Each electrically charged object generates an electric field which permeates the space around it, and exerts pushes or pulls whenever it comes in contact with other charged objects. The electric field E generated by a set of charges can be measured by putting a point charge q at a given position. The test charge will feel an electric force F. The electric field at the location of the point charge is defined as the force F divided by the charge q:
23.2. The Superposition of Electric Forces
From the definition of the electric field it is clear that in order to calculate the field strength generated by a charge distribution we must be able to calculate the total electric force exerted on a test charge by this charge distribution.Example: Problem 23.30
A total amount of charge Q is uniformly distributed along a thin, straight, plastic rod of length L (see Figure 23.3).a) Find the electric force acting on a point charge q located at point P, at a distance d from one end of the rod (see Figure 23.3).
b) Find the electric force acting on a point charge q located at point P', at a distance y from the midpoint of the rod (see Figure 23.3).
23.3. The Electric Field
Equation (23.1) shows that the electric field generated by a charge distribution is simply the force per unit positive charge. The procedure to measure the electric field, outlined in the introduction, assumes that all charges that generate the electric field remain fixed at their position while the test charge is introduced. To avoid disturbances to these charges, it is usually convenient to use a very small test charge.Example: Electric Field of Point Charge Q.
A test charge placed a distance r from point charge Q will experience an electric force Fc given by Coulomb's law:Example: Electric Field of Charge Sheet.
Suppose a very large sheet has a uniform charge density of [sigma] Coulomb per square meter. The charge sheet can be regarded as made up of a collection of many concentric rings, centered around the z-axis (which coincides with the location of the point of interest). The total electric field at this point can be obtained by vector addition of the electric field generated by all small segments of the sheet. Figure 23.6 shows the relevant dimension used to calculate the electric field generated by a ring with radius r and width dr. The strength of the electric field generated by each ring is directed along the z-axis and has a strength equal toExample: Problem 23.26
Two large sheets of paper intersect each other at right angles. Each sheet carries a uniform distribution of positive charge of [sigma] C/m2. Find the magnitude of the electric field in each of the four quadrants.23.4. Field Lines
The electric field can be represented graphically by field lines. These lines are drawn in such a way that, at a given point, the tangent of the line has the direction of the electric field at that point. The density of lines is proportional to the magnitude of the electric field. Each field line starts on a positive point charge and ends on a negative point charge. Since the density of field lines is proportional to the strength of the electric field, the number of lines emerging from a positive charge must also be proportional to the charge. An example of field lines generated by a charge distributions is shown in Figure 23.9.23.5. Electric Dipole in an Electric Field
The net force acting on a neutral object placed in a uniform electric field is zero. However, the electric field can produce a net torque if the positive and negative charges are concentrated at different locations on the object. An example is shown in Figure 23.10. The figure shows a charge Q located on one end of a rod of length L and a charge - Q located on the opposite end of the rod. The forces acting on the two charges are given byThe distribution of the charge in a body can be characterized by a parameter called the dipole moment p. The dipole moment of the rod shown in Figure 23.10 is defined as
No comments:
Post a Comment