Some things like iron nails are known for their magnetic properties, but why should frogs levitate in a magnetic field? The trick is to get the magnetic field right – you can’t just use any old bar magnet to make a frog levitate.
Frogs, like everything around and inside us, are made up of millions and billions of atoms. Each of these atoms contains electrons that whizz around a central nucleus, but when atoms are in a magnetic field, the electrons shift their orbits slightly. These shifts give the atoms their own magnetic field so when a frog is put in a very strong magnetic field, it is essentially made up of lots of tiny magnets. And there’s nothing special about frogs. All materials – including strawberries, water and gold – are ‘diamagnetic’ to some extent, but some are more convenient to levitate than others.
Frogs are convenient not only because they have a high water content, which is a good diamagnetic material, but also because they fit easily inside a tube-shaped Bitter electromagnet. Bitter electromagnets use a very large electric current to create an extremely strong magnetic field which magnetises the frog in such a way that its magnetisation is in the opposite direction to the applied field. This means that the magnetised frog is pushed up from a region of high magnetic field into one of lower field, and levitates.
Frogs, like everything around and inside us, are made up of millions and billions of atoms. Each of these atoms contains electrons that whizz around a central nucleus, but when atoms are in a magnetic field, the electrons shift their orbits slightly. These shifts give the atoms their own magnetic field so when a frog is put in a very strong magnetic field, it is essentially made up of lots of tiny magnets. And there’s nothing special about frogs. All materials – including strawberries, water and gold – are ‘diamagnetic’ to some extent, but some are more convenient to levitate than others.
Frogs are convenient not only because they have a high water content, which is a good diamagnetic material, but also because they fit easily inside a tube-shaped Bitter electromagnet. Bitter electromagnets use a very large electric current to create an extremely strong magnetic field which magnetises the frog in such a way that its magnetisation is in the opposite direction to the applied field. This means that the magnetised frog is pushed up from a region of high magnetic field into one of lower field, and levitates.
No comments:
Post a Comment